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I. Members of the team 
This Global Food Security-support Analysis Data 30-m (GFSAD30) Cropland Extent-Product of 

South Asia, Afghanistan and Iran (GFSAD30SAAFGIRCE) was produced by the following 

team members. Their specific roles are mentioned. 

 

Dr. Murali Krishna Gumma, Senior Scientist at the International Crops Research Institute for 

the Semi-Arid Tropics (ICRISAT) led the GFSAD30SAAFGIRCE product generation effort. Dr. 

Gumma was instrumental in the designing, coding, computing, analyzing, and synthesis of the 

Landsat-8 derived nominal 30-m GFSAD30SAAFGIRCE 

 

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey, is the Prin-

cipal Investigator (PI) of the GFSAD30 project. Dr. Thenkabail was instrumental in developing 

the conceptual framework of the GFSAD30 project and the GFSAD30SAAFGIRCE product. He 

made significant contribution in writing the manuscripts, ATBDs, User documentations, and 

providing scientific guidance on the GFSAD30 project. 

 

Dr. Pardhasaradhi Teluguntla, Research Scientist, Bay Area Environmental Research Institute 

(BAERI) at United States Geological Survey (USGS, shared his expertise in cloud computing 

and Random Forest algorithm implementation in Google Earth Engine (GEE) for GFSAD30 

SAAFGIRCE 30-m cropland extent product generation. He was also instrumental in writing the 

manuscripts, ATBDs, and user documentations. 

 

Mr. Adam Oliphant, Geographer, United States Geological Survey (USGS), shared his exper-

tise in cloud computing and Random Forest algorithm implementation in GEE for GFSAD30 

SAAFGIRCE 30-m cropland extent product generation. 

 

Dr. Jun Xiong, Research Scientist, Bay Area Environmental Research Institute (BAERI) at 

United States Geological Survey (USGS), participated in the intellectual discussions and in pro-

vided inputs and insights on GFSAD30 SAAFGIRCE 30-m cropland extent product generation 

and shared his expertise in cloud computing. 

 

Dr. Russell G. Congalton, Professor of Remote Sensing and GIS at the University of New 

Hampshire, led the independent accuracy assessment of the entire GFSAD30 project including 

GFSAD30 SAAFGIRCE 30-m cropland extent product of Australia, New Zealand and China. 

 

Ms. Kamini Yadav, PhD student at the University of New Hampshire, made contributions to 

the independent accuracy assessment directed by Prof. Russell G. Congalton. 

 

Ms. Corryn Smith, Student developer, helped in development of the croplands.org website. 

  

https://plus.google.com/117927604440673369842
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II. Historical Context and Background Information 
Monitoring global croplands (GCs) is imperative for ensuring sustainable water and food security 

for the people of the world in the twenty-first century. However, currently available cropland 

products suffer from major limitations such as: (a) Absence of precise spatial location of the 

cropped areas; (b) Coarse resolution nature of the map products with significant uncertainties in 

areas, locations, and detail; (c) Uncertainties in differentiating irrigated areas from rainfed areas; 

(d) Absence of crop types and cropping intensities; and (e) Absence of a dedicated web\data 

portal for the dissemination of cropland products. Therefore, the Global Food Security-support 

Analysis Data (GFSAD) project aimed to address these limitations by producing cropland maps 

at 30m resolution covering the globe, referred to as Global food security support-analysis data 

@ 30-m (GFSAD30) product. 

 

This Algorithm Theoretical Basis Document (ATBD) provides a basis upon which the GFSAD30 

cropland extent product was developed for the countries of South Asia, Afghanistan and Iran,  

(GFSAD30SAAFGIRCE, Table 1),  produced using Landsat-8 and Landsat-7 time-series satel-

lite sensor data.  This document provides comprehensive details of the GFSAD30CSAAFGIRCE 

production scheme that includes remote sensing data, reference and validation data, approaches, 

methods, machine learning algorithms, product generation, accuracy assessments, and area cal-

culations. 

 

Table 1. GFSAD30CE Product basic information for South Asia, Afghanistan and Iran. 

 
Product Name Short Name Spatial 

resolution 

Temporal 

coverage 

GFSAD30-m cropland Extent Prod-

uct of  South Asia, Afghanistan 

and Iran 

GFSAD30SAAFGIRCE 30-m Nominal 

2015 

Note: Nominal here means that the Landsat-8 16 day data used to produce the product is for two to three years 

(2013-2015), but the product is reported as nominal year 2015.  

 

  III. Rationale for Development of the Algorithms 
Mapping the precise location of croplands enables the extent and area of agricultural lands to be 

more effectively captured, which is of great importance for managing food production systems 

and to study their inter-relationships with water, geo-political, socio-economic, health, environ-

mental, and ecological issues (Thenkabail et al., 2010). Further, accurate development of all 

higher-level cropland products such as crop watering method (irrigated or rainfed), cropping in-

tensities (e.g., single, double, or continuous cropping), crop type mapping, cropland fallows, as 

well as assessment of cropland productivity (i.e., productivity per unit of land), and crop water 

productivity (i.e., productivity per unit of water) are all highly dependent on availability of pre-

cise and accurate cropland extent maps. Uncertainties associated with cropland extent maps af-

fect the quality of all higher-level cropland products reliant on an accurate cropland extent base 

map. However, precise and accurate cropland extent maps are currently nonexistent at the conti-

nental extent at a high spatial resolution (30-m or better). This lack of crop extent maps is partic-

ularly true for complex, small-holder dominant agricultural systems. By mapping croplands at a 

high spatial resolution at the continental scale, the GFSAD30project has resolved many of the 

shortcomings and uncertainties of other cropland mapping efforts. 
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The two most common methods for land-cover mapping over large areas using remote-sensing 

images are manual classification based on visual interpretation and digital per-pixel classifica-

tion. The former approach delivers products of high quality, such as the European CORINE Land 

Cover maps (Büttner, 2014). Although the human capacity for interpreting images is remarkable, 

visual interpretation is subjective (Lillesand et al., 2014), time-consuming, and expensive. Digital 

per-pixel classification has been applied for land-cover mapping since the advent of remote sens-

ing and is still widely used in operational programs, such as the 2005 North American Land 

Cover Database at 250-m spatial resolution (Latifovic, 2010). Pixel-based classifications such as 

maximum likelihood classifier (MLC), neural network classification (NN), decision trees, Ran-

dom Forests (RF), and Support Vector Machines are powerful, and fast classifiers that help dif-

ferentiate distinct patterns of landscape. Both supervised and unsupervised classification ap-

proaches are adopted in pixel-based classifiers. However, per-pixel classification includes sev-

eral limitations. For example, the pixel’s square shape is arbitrary in relation to patchy or contin-

uous land features of interest, and there is significant spectral contamination among neighboring 

pixels. As a result, per-pixel classification often leads to noisy classification outputs, the well-

known “salt-and-pepper” effect. There are other limitations of pixel-based classification meth-

ods: 1. they fail to capture the spatial information of high-resolution imagery such as from Land-

sat 30-m imagery, and 2. they often, classify the same field (e.g., a corn field) into different 

classes, as a result of within-field variability. This may often result in a field with a single crop 

(e.g., corn) classified as different crops.  

 

In the creation of GFSAD30SAAFGIRCE products, we used the supervised pixel-based classi-

fier Random Forest (RF), which has been widely used in agricultural cropland studies over the 

years (Myint et al., 2011) and which is considered powerful and an ideal machine learning algo-

rithm (Tian et al., 2016, Shi and Yang, 2015, Huang et al., 2010). A description of how to classify 

cropland extent of South Asia, Afghanistan and Iran is provided in section 2.3 and its sub-sec-

tions. 

 

This document describes, in detail, the development of the 30-m Cropland Extent Product of 

South Asia, Afghanistan and Iran (GFSAD30SAAFGIRCE). The approach involves the use of a 

supervised Random Forest (RF) algorithm to retrieve crop extent results from pixel-based clas-

sification (see overview of the methodology in Figure 1). 

 

IV. Algorithm Description 
An overview of the algorithm description is provided in Figure 1. The methodology used in this 

project (Figure 1) is briefly described in this paragraph to provide an overview of methods pre-

sented in detail in subsequent sections of this document. The process (Figure 1) involved com-

bining year 2013-2016 16-day time-series Landsat-8 30-m data. The process included several 

well-designed steps (Figure 1). First, the data were pre-processed by cloud masking and gap 

filling on GEE. Second, median value composites were created for three seasons/periods based 

on cloud-free or near-cloud-free wall-to-wall coverage. Such a seasonal mosaic aided in achiev-

ing cloud free clear images of the study area. Each composite mosaic contained 10 bands as listed 

in Figure 1. Third, reference data were generated throughout the study area to train the RF algo-

rithms. There are 7976 reference samples for this purpose. Fourth, the result of the pixel-based 

RF algorithm was to obtain the cropland extent product for South Asia, Afghanistan and Iran. 
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Fifth, the cropland product of South Asia, Afghanistan and Iran was evaluated for accuracy using 

1200 test samples. The process was iterated until adequate accuracies were attained. Accuracy 

assessments were performed by Dr. Russell Congalton and his PhD student, Kamini Yadav, in-

dependent of the production team. In this process, the validation data were only available to the 

accuracy assessment team and were hidden from the production team. As a result, there was a 

completely independent accuracy assessment. Finally, the GFSAD30SAAFGIRCE product was 

made available on croplands.org. 

 

 
 

Figure 1. Flowchart of mapping methods for Landsat-8 derived cropland extent-product of South 

Asia, Afghanistan, and Iran for the nominal year 2015. 

 

a.     Input data 

i. Region Definition 
The study was conducted for all the countries of South Asia region, Afghanistan, and Iran (see 

Figure 2 and Figure 5). The country boundaries were determined by the Global Administrative 

Unit Layers (GAUL) of United Nations (http://www.fao.org/geonet-

work/srv/en/metadata.show?id=12691&currTab=simple). 
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ii.  Reference Croplands Samples 
Reference data are required for both training the machine learning algorithms (see section 2.3) 

as well as for validating the final products. First, we conducted extensive field survey between 

2013- 2016, during the crop-growing season for major crops in study regions.   

 

More than 2800 ground samples were collected from our study area following the specific guide-

lines on collecting ground reference data (Congalton, 2015). The sampling sites included various 

crop types: such as Cereal crops (Rice, Wheat, Maize, and Sorghum), Millets, Legumes (Pigeon 

pea, Chickpea, Black-gram, Green-gram, Lentils, Peas, and Beans), Oilseeds (Groundnut, sun-

flower, and Cotton), Vegetables, Continuous crops (Sugarcane, Orchard crops, Plantations), Fod-

der crops  and some fallow lands. The field survey gathered more than 2800 ground samples 

including: (1) Location of samples (GPS position, location name, date of collection); crop prop-

erties (2) Croplands versus non-croplands; (3) irrigated or rainfed; (4) Crop intensity (single, 

double, triple, continuous cropping in 12 months); (5) Crop type (major crop types mentioned 

above, others); and (6) Digital photographs of each sample. 
 

The ground data samples were collected from three main sources.  

 

First, field samples (or ground data) were collected during 2013 to 2016. The field-surveyed 

data were divided into two independent datasets with 60:40 split.  The first set was used for 

training machine-learning algorithms (e.g., Random Forest) and testing the product. The sec-

ond set was kept aside and was used for independent accuracy assessment.  Also, we obtained 

reference-training data from the following reliable sources in addition to our own field data col-

lections.  

 

Second, random samples were obtained by interpreting sub-meter to 5-meter very high spatial 

resolution imagery (VHRI) data throughout South Asia, Afghanistan and Iran available to US 

Government entities through the sub-meter to 5-m imagery obtained from the National Geospa-

tial Agency (NGA). For this, we collected 5176 reference and 1500 validation samples. 

 

Third, reference data were obtained from other reliable sources such as Central Research Institute 

for Dryland Agriculture (CRIDA) a national Institute in India, Department of Agriculture Exten-

sion, Bangladesh in Bangladesh. The reference training data were used to “train” the Random 

Forest algorithm to separate croplands from non-croplands. This required us to keep adding train-

ing samples until optimal classification results were obtained (see section 2.3 and its sub-sec-

tions). A total of 7976 (crop= 3314, no crop= 4662) representative samples were used to “train” 

and separate croplands from non-croplands in South Asia, Afghanistan and Iran (see Figure 2 

showing the distribution of these samples) (Table 2).  

 

The whole set of Reference data including primary and secondary data were made available, at 

the following website: https://croplands.org/app/data/search 

 
 

 

  

https://croplands.org/app/data/search
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Table 2. Number of reference samples used for training the Random Forest (RF) machine-learn-

ing algorithm and number of validation samples used for independent accuracy assessment.  
 

Zone# Class   Training samples Validation samples 

  Crop 1889 59 

Zone1  No Crop 1485 191 

  Total  3374 250 

  Crop 460 12 

Zone2  No Crop 2008 238 

  Total  2468 500 

  Crop 144 151 

Zone3 No Crop 87 99 

  Total  231 250 

  Crop 392 164 

Zone4 No Crop 507 85 

  Total  899 250 

  Crop 346 140 

Zone5  No Crop 457 109 

  Total  803 250 

  Crop 83 31 

Zone6 No Crop 118 219 

  Total  201 250 

 Crop 3314 557 

Total  No Crop 4662 941 

6 zones Total 7976 1500 

 

Note: The number of training and validation samples depended on the results. When optimal 

results were obtained, we stopped adding further samples. The process requires starting with a 

certain sample number initially and progressively increasing the sample number until optimal 

accuracies are reached. 
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iii.  Image Stratification 
The cropland versus non-cropland classification was carried out using the Random Forest (RF) 

machine-learning algorithm by stratifying the study area into refined agro-ecological zones 

(AEZs) (Figure 2). The AEZs were developed by the United Nation’s Food and Agricultural 

Organization (UN FAO). However, this resulted in too many zones (which is not necessary given 

that many zones have only a very small proportion of crops). Therefore, we combined some of 

these zones into broader refined AEZs (RAEZs) based on the convenience, and speed of applying 

the RF algorithm. This resulted in six broad RAEZs across South Asia, Afghanistan and Iran 

(Figure 2). RF algorithm were trained for separating croplands from non-croplands in each of 

these RAEZs (Figure 2) using the reference training data falling within these zones. Working 

within each RAEZ also helped in data management and classification speed. 

 

 
Figure 2. Stratification of the study area into distinct and broad refined agro-ecological zones 

(RAEZs). The figure also shows the distribution of the reference training data used in the Ran-

dom Forest (RF) machine-learning algorithm.  The Random Forest (RF) pixel-based supervised 

machine learning algorithm used in this study was “trained” using reference training data falling 

within each of these zones to separate croplands from non-croplands. 
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iv.   Satellite Imagery: Landsat-8 
In order to cover crop dynamics in different periods/seasons, Landsat-8 OLI (Roy et al., 2014) 

satellite data have been used for South Asia, Afghanistan and Iran.  There is a 16-day revisit time 

per Landsat-8 OLI 30-m data. It is difficult to get continuous 16-day cloud free time-series data 

for wall-to-wall coverage for any part of the region. To overcome this limitation and to ensure 

cloud-free or near-cloud-free wall-to-wall coverage, bi/tri-monthly seasonal composites, depend-

ing on the cloudiness of the countries\regions, were composed (e.g., Figures 3). Finally, 30-m 

mega-file data-cube (MFDC) were created as per the following steps leading to a 32-band MFDC 

(Figure 3) for South Asia, Afghanistan and Iran from three seasons/periods. A systematic details 

of the MFDC composition is described below.  

 

The goal of the time-composites was to achieve cloud-free or near cloud-free wall-to-wall com-

posites over the entire study area (e.g., Figures 3). This we wanted to achieve, using as many 

time-periods as possible as to get temporal stacks that can monitor phenology. However, the 

time-periods are decided by the ability to achieve cloud-free or near cloud-free images over a 

time-period. Based on crop seasons in the study region, we were able to achieve the cloud-free 

or near cloud-free images at much shorter time-periods leading to 3 seasons/periods (period1 

(kharif season / monsoon season) Julian days 151-300; period 2 (rabi season / winter season): 

Julian days 301-365,1-60; period 3 (summer season): Julian days 61-150)(Figure 3).  

 

The process involved gathering all the Landsat-8 16-day images over South Asia, Afghanistan 

and Iran (Figure 3), available for each time-period/season (e.g., period 1 (kharif season) Julian 

days 151-300), and compositing each of the 10 bands by taking the median value of each pixel 

of each band.  These composites are called median value composites for each period for each 

band. The ten bands used in this study were (Figure 3): blue (0.45-0.51m), green (0.53-0.59m), 

red 0.63-0.69m), NIR (0.85-0.89m), SWIR1 (1.55 1.65m), SWIR2 (2.1-2.3 m), and TIR1 

(10.60-11.19m) bands along with Normalized Difference in Vegetation Index (NDVI), En-

hanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI).  Thereby, for 

South Asia, Afghanistan and Iran, ten median value bands composed over 3 time-periods/ sea-

sons resulted in a 30 bands. Additionally elevation and slope also added finally resulted in 32-

band  MFDC (Figure 3). The band stack, and time-periods leading to MFDC are shown in Table 

3 as well as in Figures 3. All compositions were performed on the GEE cloud-based geospatial 

platform for planetary-scale data analysis (Gorelick et al,, 2017). Landsat top of atmosphere 

(TOA) products were used instead of surface reflectance (SR) due to the limited temporal avail-

ability of Landsat-8 surface reflectance imagery on GEE. 
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Figure 3. 30-m Data-cube for the South Asia, Afghanistan and Iran regions composited for 3 

time-periods/ seasons using 2013-2016 Landsat-8 data. For each period (e.g., period 1 (kharif 

season: Julian days 151-300), ten bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1, NDVI, 

EVI and NDWI Landsat-8) were composited, taking median value of a given pixel over the pe-

riod 1. From 3 periods, in addition elevation and slope, so there was a 32-band mega file data 

cube (MFDC).  

 

Table 3. The process of mega file data cube (MFDC) composition for the study areas based on 

median value composition of 8 Landsat-8 bands over 2013-2016 for three time-periods/seasons. 

 

Region/ 

Country  

Landsat  

image    

Series 

Years 

of  

data  

Time-compo-

sited* 

Bands 

used** 

Mega-file 

Data 

Cube  

Data  

source 

name 
satellite, 

sensor 
Years 

Julian days 

over which 

Landsat data 

are time   com-

posited 

# of bands 

for each  

composite  

Total # of 

bands in 

MFDC 

name 

South Asia, 

Afghanistan 

and Iran 

 Landsat-8 
 2014 - 

2016 

C1:150-300              

C2:301-365 &  

1-60 

C3:61-150 

blue, green, 

red, NIR , 

SWIR-1, 

SWIR-2,  

TIR-1, EVI, 

NDVI, & 

NDWI 

32 USGS 

*   C1:151-300 = composite 1 over Julian dates 151 to 300. Given Landsat-8 is acquired over every 

16 days, There will be ~9 to 10 images in first season.   

Then each band (e.g., blue) is derived using median value from these 10 images. Similarly for all 

bands. Similarly for other periods/seasons. 

**NIR - near-infrared, SWIR = short-wave infrared, TIR= thermal-infrared   

NDVI = normalized difference vegetation index,       

EVI= enhanced vegetation index and NDWI = normalized difference water index.   
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b.     Theoretical Description                                                

i.   Definition of Croplands 
For all products within GFSAD30 cropland extent map, cropland extent was defined as, “lands 

cultivated with plants harvested for food, feed, and fiber, including both seasonal crops (e.g., 

wheat, rice, corn, soybeans, cotton) and continuous plantations (e.g., coffee, tea, rubber, cocoa, 

and oil palms). Cropland fallows are lands uncultivated during a season or a year but are farm-

lands and are equipped for cultivation, including plantations (e.g., orchards, vineyards, coffee, 

tea, and rubber)” (Teluguntla et al., 2015). Cropland extent also includes areas equipped for crop-

ping but may not be cropped in a particular season or year. These are cropland fallows. So 

cropland extent includes all planted crops plus cropland fallows. Non-croplands include all other 

land cover classes other than croplands and cropland fallows. 

 
Figure 4. Illustration of definition of cropland mapping. Croplands included: (a) standing crop, 

(b) cropland fallows, and (c) permanent plantation crops. Note: + sign means adding. Means total 

net croplands= standing crops + cropland fallows + plantations. 

 

ii.   Algorithm 
The study used one machine-learning algorithm to create the cropland extent product, which is 

the pixel-based supervised classifier Random Forest (RF). The algorithm is described in detail 

below.  Total this study area stratified into six refined FAO agro-ecological zones (Figure 2) to 

facilitate the optimal classification. 

 

c.     Practical Description 

i.   Random Forest Classifier (RF) 
The Random Forest classifier is more robust, relatively faster, and easier to implement than many 

other classifiers (Pelletier et al., 2016). The Random Forest classifier uses bootstrap aggregating 

(bagging) to form an ensemble of decision trees by searching random subspaces from the given 

data (features) and the best splitting of the nodes by minimizing the correlation between the trees. 

All supervised pixel-based classifications rely heavily on the input training samples. To discrim-

inate croplands under various environments and conditions, the sample size of the initial training 

dataset needs to be large, especially in complex regions. All samples were selected to represent 
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a 90-m x 90-m polygon. First, we made extensive field campaigns in South Asia during the 2014-

2016 crop growing seasons when data were collected on precise cropland locations as well as 

non-cropland locations. This effort led to collection of more than 2800 samples spread across 

South Asia. Second, we absorbed the ground data from previous efforts for South Asia region 

and other reliable sources. Third, sub-meter to 5-m very high spatial resolution imagery, available 

for us for the entire study region, was used to generate croplands versus non-cropland interpre-

tations by multiple analyses across South Asia, Afghanistan and Iran and a total of ~5100 data 

samples were used from these interpretations. To move forward with a larger sample size, an 

iterative sample selection procedure was introduced with the following steps for training the 

Random Forest (RF) machine-learning algorithm as illustrated in Figure 1. 
1. Build Random Forest classifier using existing training samples. Initially we start with a small 

number of samples and slowly increase the sample size till we reach high degree of accuracy 

and the accuracy plateaus at certain sample size; 

2. Based on established classifier, classify 30-m MFDC using Random Forest algorithm in GEE 

cloud; 

3. Visual assessment of classification results are compared with existing reference maps as well 

as sub-meter to 5-m very high spatial resolution imagery (VHRI); The process (Figure 1) was 

iterated until sufficient correspondence is achieved; 

4. Added (see Figure 1) 'crop' samples in missing area and 'non-crop' samples by referencing 

sub-meter to 5-m very high spatial imagery from Google Earth Imagery. For cases hard to tell 

by interpretation (fallow-land or abandoned fields), historical Landsat Images and MODIS 

NDVI time-series are also referenced. All the samples selected to represent a 90-m x 90-m 

polygon. 

5. Loop step 1-4 with enlarged training dataset until classification becomes stable. 

The number of iterations required for the training sample selection is a function of the complexity 

of the area. The whole study area was divided into six zones; to carry out classification (Figure 

2): the iterative selection will have to loop ~4-5 times to improve the initial classified results. 

 

ii. Programming and codes 
The pixel-based supervised machine-learning algorithm (RF) was coded on GEE using Python 

and Java Scripts using Application Programming Interface (API). The codes are made available 

in a zip file and are available for download along with this ATBD. 

 

iii. Results 
The machine learning algorithms (RF), discussed in previous sections, were trained to separate 

croplands versus non-croplands for each of the zones (Figure 2) based on knowledge generated 

using reference data. The machine learning algorithms were then run on the GEE cloud-compu-

ting environment using a Landsat-8 collection for each of the zones to separate croplands versus 

non-croplands. The process was iterated and knowledge in the algorithms tweaked several times, 

before getting accurate results of croplands versus non-croplands.  This process led to producing 

the Global Food Security-support Analysis Data @ 30-m cropland extent product for South Asia, 

Afghanistan and Iran (Figure 5). This product is available through the Land Processes Distributed 

Active Archive Center (LP DAAC). The same dataset is also available for visualization at 

https://croplands.org/app/map.  

https://croplands.org/app/map
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Zoom-in views show complete resolution of the imagery that shows individual farms (Figure 5). 

Full resolution of 30-m cropland extent can be visualized in croplands.org by zooming-in to spe-

cific areas as illustrated in lower panel (a) and (b) of Figures 5, and 6. For any area in South Asia, 

Afghanistan and Iran, croplands can be visualized by zooming into specific areas in 

croplands.org. The background sub-meter to 5-m imagery, available for the regions on Google 

Earth helps to evaluate the precision of the cropland extent product (“zoom in” and “toggle” 

cropland “on” and “off” to see the sub-meter to 5-m imagery in the background). 

 

 
 

Figure 5. Cropland Extent Product at 30-m for South Asia, Afghanistan, and Iran (left image) 

with illustrative zoom in view for a location (bottom). This product is available for visualization 

@: croplands.org. The data are downloadable from LP DAAC. 

http://croplands.org/
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iv. Cropland Areas  
Countrywide cropland areas calculated based on 30-m crop extent maps from this study are sum-

marized here. Table 5 shows country-by-country cropland area statistics of all countries gener-

ated from this study and compared with several other sources such as the national census data 

based MIRCA2000 (Siebert and Portmann, 2010) which were also updated in the year 2015, The 

Food and Agricultural Organization (FAO) of United Nation’s compiled statistics, MODIS 500-

m derived cropland areas from GRIPC (Salmon et al., 2015), and GIAM-GMRCA (Thenkabail 

et al., 2009 and Biradar et al., 2009) derived cropland areas. Overall as per GFSAD30SAAF-

GIRCE estimates, total net cropland area of India is 180 Mha, which is top ranked country in the 

world in terms of cropland area. Net cropland area of Iran is 33 Mha followed by Pakistan with 

21 Mha, Afghanistan 8.5 Mha, Nepal 2.0 Mha, Sri Lanka 1.5Mha, Bhutan 0.05Mha. Total 255 

Mha from 9 countries of this study area. 

 

Table 4. Net cropland areas (NCAs) derived based on 30-m GFSAD30 cropland product and 

comparison with other cropland products. 

 

Country  Land Area1 GFSAD302 
MIRCA  

20143 

 FAO Agri-

cultural 

land4 

GIAM-

GMRCA5 

GRIPC 

20056 

Name  Ha Ha Ha Ha Ha Ha 

India 297459504 179800110 177397578 169705109 150059162 187497499 

Iran 162802013 33063882 16644983 18969365 8133031 7358862 

Pakistan 77067449 21098899 25160408 21286800 17678708 20402689 

Bangladesh  13014225 9562059 10027180 8545166 7771342 9234489 

Afghanistan 65249570 8499171 9480926 7923190 3756220 909683 

Nepal 14358108 2073750 3421684 2520250 4383047 3546940 

Sri Lanka 6274038 1477022 2155484 2168910 2387275 3536804 

Bhutan 3840909 46252 166573 99879 155065 99645 

Maldives 29963 630   7000     

 Note:              

1= Total land area is land area excluding area under inland water bodies     

2= GFSAD30 current study           

3=  Monthly irrigated and rainfed crop areas (MIRCA) around the year 2014 derived by Portman et al. 

4= FAO Agricultural land area excluding  pasture based on FAO2013 statistics consider nominal 2015 

http://www.fao.org/faostat/en/#data/QC         

5= Global croplands derived from Global Irrigated Area Mapping (GIAM)  and    

Global Map of Rainfed Cropland Areas (GMRCA)  by Thenkabail et al., 2009 and Biradar et al., 2009  

6= Global rain-fed, irrigated, and paddy croplands (GRIPC) derived by solmon et al., 2015   

 

  



 - 17 - DCN 
Version 1.0 

 

V. Calibration Needs/Validation Activities 
An independent accuracy assessment was performed for each of the six zones in the study area. 

For this assessment, 1500 validation samples were used to determine the accuracy of the final 

cropland extent map of South Asia, Afghanistan and Iran. An error matrix (Table 5) was gener-

ated for each of the six zones providing producer’s, user’s, and overall accuracies (Story and 

Congalton, 1986, Congalton, 1991, and Congalton and Green, 2009).    
For the entire study region all of 6 zones combined, the overall accuracies were 84.5% with 

producer’s accuracy of 74.8% (errors of omissions of 25.2%) and user’s accuracy of 82.0% (er-

rors of commissions of 18%) (Table 6) for cropland class. These results mean, there is 25.2% 

missing croplands and 18% non-croplands mapped as croplands. These errors of omissions and 

commissions, somewhat balance themselves, but the goal must be to increase producer’s accura-

cies and reduce user’s accuracies. 

When considering all 6 zones, the overall accuracies ranged between 76% -96%, producer’s ac-

curacies ranged between 71-85% except for zone 2 (33.3%) and zone 6(48.4%); and user’s ac-

curacies ranged between 56-86%  (Table 5). Zones that included a larger proportion of croplands 

had high overall, user’s, and producer’s accuracies. These results clearly imply the high level of 

confidence in differentiating croplands from non-croplands for the South Asia region. 

 

Table 5. Independent Accuracy Assessment error matrix of 30-m Cropland Extent Product by 

Zone for the entire study Area (six zones). 
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VI. Constraints and Limitations 

GFSAD30SAAFGIRCE product mapped the croplands of South Asia, Afghanistan and Iran @ 

nominal 30-m, which is the best known resolution for cropland mapping over such a large agri-

cultural area covering 9 countries. It also has high levels of accuracies with overall accuracies of 

84.5%, Producer’s accuracy of 74.8% (errors of omissions 25.2%) and user’s accuracy of 82.0% 

(Errors of commissions 18%) for the cropland class.  

 

A producer’s accuracy of 74.8% for the cropland class means an error of omission of 25.2%, 

which suggests that roughly a quarter of the croplands were missing in the product. A user accu-

racy of 82.0 % for the cropland class means there is an error of commission of 18.0 %, meaning 

18% of non-croplands are mapped as croplands. We tweaked the machine learning algorithms 

(section IV) to maximize capturing as much croplands as feasible automatically. In this process, 

some non-croplands are mapped as croplands as well. This is a preferred solution, in order to not 

miss croplands or to only miss them minimally. As a compromise, mapping some non-croplands 

as croplands becomes unavoidable.  

 

Numerous issues cause uncertainties and limitations in cropland extent product. Some of these 

issues are discussed here. First, temporal coverage. The 16 day Landsat-8 and 16-day Landsat-7 

coverage when put together, lead to substantial temporal coverage. Yet, if we look at Figure 3, 

we were only able to achieve seasonal (and not bi-weekly or monthly) cloud-free or near cloud-

free mosaics of the entire study area. This is not surprising given such a large area involved and 

frequent cloud across the study area. As a result, if we were to have daily coverage over an area 

(e.g., like MODIS) then it becomes feasible to have more frequent (e.g., monthly or bi-monthly 

composites) temporal coverage of the continent that will help advance cropland mapping at im-

proved accuracies. Currently, even with Landsat 8 satellite, at best, we have two  images per 

month (compared to 30 images of MODIS when we consider daily daytime coverage of MODIS). 

Second, is the limitation of the reference training and validation data. In this project, we already 

have large training and validation data compared to any previous work as described in various 

previous sections. Nevertheless, much wider and extensive field visits to different parts of the 

study regions will be helpful in better understanding of the issues involved and as a result better 

mapping. We had extensive field visits in India, Bangladesh, Sri Lanka, but these data were 

mostly acquired one time. The greatest difficulties in cropland mapping in eastern part of India 

were in mountainous agriculture (e.g., terrace agriculture), cropland fallows (e.g., whether a fal-

low is 1 year or 5-year or permanent). These and numerous other issues (e.g., implementing 

machine learning algorithms and uncertainties inherent in them) will continue to be there in 

cropland mapping over such large agriculture areas in china. Nevertheless advances made in this 

study is significant, especially in developing a nominal 30-m cropland extent of a large agricul-

ture countries like India, Iran Pakistan and Sri Lanka  at very good accuracies. 

 

  



 - 19 - DCN 
Version 1.0 

VII. Publications 
The following publications are related to the development of the above croplands products:  

 

1. Peer-reviewed publications relevant to this study 

Oliphant, A., Thenkabail, P., Teluguntla, P., Xiong, J. Congalton, R., Yadav, K., 2017. Map-

ping cropland Extent of South East Asia using time-series Landsat 30-m data using Random 

Forest on Google Earth Engine (GEE) Cloud Computing. In Preparation. 

Xiong, J., Thenkabail, P. S., James C. T., Gumma, M. K., Teluguntla, P., Congalton, R. G., 

Poehnelt, J., Kamini Yadav., et al. (2017). A Nominal 30-m Cropland Extent of Continental Af-

rica Using Sentinel-2 data and Landsat-8 by Integrating Random Forest (SVM) and Hierarchical 

Segmentation Approach on Google Earth Engine. In press. 

 

Xiong, J., Thenkabail, P. S., Gumma, M. K., Teluguntla, P., Poehnelt, J., Congalton, R. G., et al. 

(2017). Automated cropland mapping of continental Africa using Google Earth Engine cloud 

computing. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 225–244. 

 

Teluguntla, P., Thenkabail, P.S., Oliphant, A., Xiong, J., Gumma, M., Congalton, R., and Yadav, 

K. (2017).  30-m Cropland Extent and Areas of Australia, New Zealand, and China for the Year 

2015 Derived using Landsat-8 Time-Series Data for three years (2013-2015) using Random For-

est Algorithm on Google Earth Engine Cloud Platform. In preparation. 

 
2. Peer-reviewed publications within GFSAD project 
Congalton, R.G., Gu, J., Yadav, K., Thenkabail, P.S., and Ozdogan, M. 2014. Global Land Cover 

Mapping: A Review and Uncertainty Analysis. Remote Sensing,, 6: 12070-

12093; http://dx.doi.org/10.3390/rs61212070. 

 

Congalton, R.G, 2015. Assessing Positional and Thematic Accuracies of Maps Generated from 

Remotely Sensed Data. Chapter 29, In Thenkabail, P.S., (Editor-in-Chief), 2015. "Remote Sens-

ing Handbook" Volume I: Volume I: Data Characterization, Classification, and Accuracies: Ad-

vances of Last 50 Years and a Vision for the Future. Taylor and Francis Inc.\CRC Press, Boca 

Raton, London, New York. Pp. 900+. In Thenkabail, P.S., (Editor-in-Chief), 2015. "Remote 

Sensing Handbook" Volume I:): Remotely Sensed Data Characterization, Classification, and 

Accuracies. Taylor and Francis Inc.\CRC Press, Boca Raton, London, New York. ISBN 

9781482217865. Pp. 678.  

 

Gumma, M.K., Thenkabail, P.S.,Teluguntla, P., Rao, M.N., Mohammed, I.A., and Whitbread, 

A.M. 2016. Mapping rice-fallow cropland areas for short-season grain legumes intensification in 

South Asia using MODIS 250 m time-series data. International Journal of Digital 

Earth, http://dx.doi.org/10.1080/17538947.2016.1168489 

 

Massey, R., Sankey, T.T., Congalton, R.G., Yadav, K., Thenkabail, P.S., Ozdogan, M., Sánchez 

Meador, A.J. 2017. MODIS phenology-derived, multi-year distribution of conterminous U.S. 

crop types, Remote Sensing of Environment, 198: 490-503, 

https://doi.org/10.1016/j.rse.2017.06.033. 

http://dx.doi.org/10.3390/rs61212070
http://dx.doi.org/10.1080/17538947.2016.1168489
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Phalke, A. R., Ozdogan, M., Thenkabail, P. S., Congalton, R. G., Yadav, K., & Massey, R. et al. 

(2017). A Nominal 30-m Cropland Extent and Areas of Europe, Middle-east, Russia and Central 

Asia for the Year 2015 by Landsat Data using Random Forest Algorithms on Google Earth En-

gine Cloud. (in preparation). 

 

Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Congalton, R.G., Oliphant, A., 

Poehnelt, J., Yadav, K., Rao, M., and Massey, R. 2017. Spectral matching techniques (SMTs) 

and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia 

using MODIS 250-m time-series (2000–2015) data, International Journal of Digital Earth.  

, http://dx.doi.org/10.1080/17538947.2016.1267269. 

 

Teluguntla, P., Thenkabail, P., Xiong, J., Gumma, M.K., Giri, C., Milesi, C., Ozdogan, M., Con-

galton, R., Yadav, K., 2015. CHAPTER 6 - Global Food Security Support Analysis Data at Nom-

inal 1 km (GFSAD1km) Derived from Remote Sensing in Support of Food Security in the 

Twenty-First Century: Current Achievements and Future Possibilities, in: Thenkabail, P.S. (Ed.), 

Remote Sensing Handbook (Volume II): Land Resources Monitoring, Modeling, and Mapping 

with Remote Sensing. CRC Press, Boca Raton, London, New York., Pp. 131-160.Link 

 

Xiong, J., Thenkabail, P.S., Tilton, J.C., Gumma, M.K., Teluguntla, P., Oliphant, A., Congalton, 

R.G., Yadav, K. 2017. A Nominal 30-m Cropland Extent and Areas of Continental Africa for the 

Year 2015 by Integrating Sentinel-2 and Landsat-8 Data using Random Forest, Support Vector 

Machines and Hierarchical Segmentation Algorithms on Google Earth Engine Cloud. Remote 

Sensing Open Access Journal (in review). 

 

Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G., Yadav, 

K., Thau, D. 2017. Automated cropland mapping of continental Africa using Google Earth En-

gine cloud computing, ISPRS Journal of Photogrammetry and Remote Sensing, 126:  225-244,  

https://doi.org/10.1016/j.isprsjprs.2017.01.019. 

 

3. Web sites and Data portals:  
 

https://croplands.org   (30-m global croplands visualization tool) 

http://geography.wr.usgs.gov/science/croplands/index.html  (GFSAD30 web portal and dissemination) 

http://geography.wr.usgs.gov/science/croplands/products.html#LPDAAC (dissemination on LP DAAC) 

http://geography.wr.usgs.gov/science/croplands/products.html   (global croplands on Google Earth Engine) 

https://croplands.org (crowdsourcing global croplands data) 

 

4. Other relevant past publications prior to GFSAD project 
Biggs, T., Thenkabail, P.S., Krishna, M., GangadharaRao Rao, P., and Turral, H., 2006. 

Vegetation phenology and irrigated area mapping using combined MODIS time-series, ground 

surveys, and agricultural census data in Krishna River Basin, India. International Journal of 

Remote Sensing. 27(19): 4245-4266. 

 

Biradar, C.M., Thenkabail, P.S., Noojipady, P., Yuanjie, L., Dheeravath, V., Velpuri, M., Turral, 

H., Gumma, M.K., Reddy, O.G.P., Xueliang, L. C., Schull, M.A., Alankara, R.D., Gunasinghe, 

S., Mohideen, S., Xiao, X. 2009. A global map of rainfed cropland areas (GMRCA) at the end 

https://doi.org/10.1016/j.isprsjprs.2017.01.019
https://croplands.org/
http://geography.wr.usgs.gov/science/croplands/index.html%20%09(GFSAD30%20web%20portal%20and%20dissemination)
http://geography.wr.usgs.gov/science/croplands/products.html#LPDAAC
http://geography.wr.usgs.gov/science/croplands/products.html%20%09%20(global%20croplands%20on%20Google%20Earth%20Engine)
http://www.croplands.org/
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of last millennium using remote sensing. International Journal of Applied Earth Observation and 

Geoinformation. 11(2): 114-129.  http://dx.doi.org/10.1016/j.jag.2008.11.002. 

 

Dheeravath, V., Thenkabail, P.S., Chandrakantha, G, Noojipady, P., Biradar, C.B., Turral. H., 

Gumma, M.1, Reddy, G.P.O., Velpuri, M. 2010. Irrigated areas of India derived using MODIS 

500m data for years 2001-2003. ISPRS Journal of Photogrammetry and Remote Sensing. 65(1): 

42-59. http://dx.doi.org/10.1016/j.isprsjprs.2009.08.004.  

 

Thenkabail, P.S. 2012. Special Issue Foreword. Global Croplands special issue for the August 

2012 special issue for Photogrammetric Engineering and Remote Sensing. PE&RS. 78(8): 787- 

788.Thenkabail, P.S. 2012. Guest Editor for Global Croplands Special Issue. Photogrammetric 

Engineering and Remote Sensing. PE&RS. 78(8). 

 

Thenkabail, P.S., Biradar C.M., Noojipady, P., Cai, X.L., Dheeravath, V., Li, Y.J., Velpuri, M., 

Gumma, M., Pandey, S. 2007a. Sub-pixel irrigated area calculation methods. Sensors Journal 

(special issue: Remote Sensing of Natural Resources and the Environment (Remote Sensing 

SensorsEdited by Assefa M. Melesse). 7: 2519-2538. 

http://www.mdpi.org/sensors/papers/s7112519.pdf. 

 

Thenkabail, P.S., Biradar C.M., Noojipady, P., Dheeravath, V., Li, Y.J., Velpuri, M., Gumma, 

M., Reddy, G.P.O., Turral, H., Cai, X. L., Vithanage, J., Schull, M., and Dutta, R. 2009a. Global 

irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. 

International Journal of Remote Sensing. 30(14): 3679-3733. July, 20, 2009. 

 

Thenkabail, P.S., Biradar, C.M., Turral, H., Noojipady, P., Li, Y.J., Vithanage, J., Dheeravath, 

V., Velpuri, M., Schull M., Cai, X. L., Dutta, R. 2006. An Irrigated Area Map of the World 

(1999) derived from Remote Sensing. Research Report # 105. International Water Management 

Institute. Pp. 74. Also, see under documents in: http://www.iwmigiam.org. 

 

Thenkabail, P.S.; Dheeravath, V.; Biradar, C.M.; Gangalakunta, O.P.; Noojipady, P.; Gurappa, 

C.; Velpuri, M.; Gumma, M.; Li, Y. 2009b. Irrigated Area Maps and Statistics of India Using 

Remote Sensing and National Statistics. Journal Remote Sensing. 1: 50-67. 

http://www.mdpi.com/2072-4292/1/2/50. 

 

Thenkabail, P.S., GangadharaRao, P., Biggs, T., Krishna, M., and Turral, H., 2007b. Spectral 

Matching Techniques to Determine Historical Land use/Land cover (LULC) and Irrigated Areas 

using Time-series AVHRR Pathfinder Datasets in the Krishna River Basin, India. 

Photogrammetric Engineering and Remote Sensing. 73(9): 1029-1040. (Second Place Recipients 

of the 2008 John I. Davidson ASPRS President’s Award for Practical papers). 

 

Thenkabail, P.S., Hanjra, M.A., Dheeravath, V., Gumma, M.K. 2010. A Holistic View of Global 

Croplands and Their Water Use for Ensuring Global Food Security in the 21st Century through 

Advanced Remote Sensing and Non-remote Sensing Approaches. Remote Sensing open access 

journal. 2(1): 211-261. doi:10.3390/rs2010211. http://www.mdpi.com/2072-4292/2/1/211 

 

http://www.iwmigiam.org/
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Thenkabail P.S., Knox J.W., Ozdogan, M., Gumma, M.K., Congalton, R.G., Wu, Z., Milesi, C., 

Finkral, A., Marshall, M., Mariotto, I., You, S. Giri, C. and Nagler, P. 2012. Assessing future 

risks to agricultural productivity, water resources and food security: how can remote sensing 

help? Photogrammetric Engineering and Remote Sensing, August 2012 Special Issue on Global 

Croplands: Highlight Article. 78(8): 773-782. 

 

Thenkabail, P.S., Schull, M., Turral, H. 2005. Ganges and Indus River Basin Land Use/Land 

Cover (LULC) and Irrigated Area Mapping using Continuous Streams of MODIS Data. Remote 

Sensing of Environment. Remote Sensing of Environment, 95(3): 317-341. 

 

Velpuri, M., Thenkabail, P.S., Gumma, M.K., Biradar, C.B., Dheeravath, V., Noojipady, P., 

Yuanjie, L.,2009. Influence of Resolution or Scale in Irrigated Area Mapping and Area 

Estimations. Photogrammetric Engineering and Remote Sensing (PE&RS). 75(12): December 

2009 issue. 

 

5.  Books and Book Chapters 
Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Giri, C., Milesi, C., Ozdogan, M., 

Congalton, R.,Tilton, J.,Sankey,T.R., Massey, R., Phalke, A., and Yadav, K. 2015. Global Food 

Security Support Analysis Data at Nominal 1 km (GFSAD1 km) Derived from Remote Sensing 

in Support of Food Security in the Twenty-First Century: Current Achievements and Future 

Possibilities, Chapter 6. In Thenkabail, P.S., (Editor-in-Chief), 2015. “Remote Sensing 

Handbook” (Volume II): Land Resources Monitoring, Modeling, and Mapping with Remote 

Sensing. Taylor and Francis Inc. Press, Boca Raton, London, New York. ISBN 9781482217957 
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H.). 
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2009. (Editors: Thenkabail. P., Lyon, G.J., Biradar, C.M., and Turral, H.). 
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Press- Taylor and Francis group, Boca Raton, London, New York. Pp. 475. Published in June, 

2009. (Editors: Thenkabail. P.,Lyon, G.J., Biradar, C.M., and Turral, H.). 

 



 - 23 - DCN 
Version 1.0 

Thenkabail, P.S., Lyon, G.J., and Huete, A. 2011. Book Chapter # 1: Advances in Hyperspectral 

Remote Sensing of Vegetation. In Book entitled: “Remote Sensing of Global Croplands for Food 

Security” (CRC Press- Taylor and Francis group, Boca Raton, London, New York. Edited by 

Thenkabail, P.S., Lyon, G.J., and Huete, A. Pp. 3-38. 

 

Thenkabail. P.S., Biradar, C.M., Noojipady, P., Dheeravath, V., Gumma, M., Li, Y.J., Velpuri, 

M., Gangalakunta, O.R.P. 2009c. Book Chapter 3: Global irrigated area maps (GIAM) and 

statistics using remote sensing. Pp. 41-120. In the book entitled: “Remote Sensing of Global 

Croplands for Food Security” (CRC Press- Taylor and Francis group, Boca Raton, London, New 

York. Pp. 475. Published in June, 2009. (Editors: Thenkabail. P., Lyon, G.J., Biradar, C.M., and 

Turral, H.). 

 

Thenkabail. P., Lyon, G.J., Turral, H., and Biradar, C.M. (Editors) 2009d. Book entitled: 

“Remote Sensing of Global Croplands for Food Security” (CRC Press- Taylor and Francis group, 

Boca Raton, London, New York. Pp. 556  Published in June, 2009. Reviews of this book: 

http://www.crcpress.com/product/isbn/9781420090093 

http://gfmt.blogspot.com/2011/05/review-remote-sensing-of-global.html 

 

Thenkabail, P.S. and Lyon, J.G. 2009. Book Chapter 20: Remote sensing of global croplands for 

food security: way forward. Pp. 461-466. In the book entitled: “Remote Sensing of Global 

Croplands for Food Security” (CRC Press- Taylor and Francis group, Boca Raton, London, New 

York. Pp. 475. Published in June, 2009. (Editors: Thenkabail. P., Lyon, G.J., Biradar, C.M., and 

Turral, H.). 

 

Turral, H., Thenkabail, P.S., Lyon, J.G., and Biradar, C.M. 2009. Book Chapter 1: Context, need: 

The need and scope for mapping global irrigated and rain-fed areas. Pp. 3-12. In the book entitled: 

“Remote Sensing of Global Croplands for Food Security” (CRC Press- Taylor and Francis group, 

Boca Raton, London, New York. Pp. 475. Published in June, 2009. (Editors: Thenkabail. P., 

Lyon, G.J., Biradar, C.M., and Turral, H.). 

 

VIII. Acknowledgements 
The project was funded by the National Aeronautics and Space Administration (NASA) grant 

number: NNH13AV82I through its MEaSUREs (Making Earth System Data Records for Use in 

Research Environments) initiative. The United States Geological Survey (USGS) provided sup-

plemental funding from other direct and indirect means through the Climate and Land Use 

Change Mission Area, including the Land Change Science (LCS) and Land Remote Sensing 

(LRS) programs. The project was led by United States Geological Survey (USGS) in collabora-

tion with NASA AMES, University of New Hampshire (UNH), California State University Mon-

terey Bay (CSUMB), University of Wisconsin (UW), NASA GSFC, and Northern Arizona Uni-

versity. There were a number of International partners including The International Crops Re-

search Institute for the Semi-Arid Tropics (ICRISAT). Authors gratefully acknowledge the ex-

cellent support and guidance received from the LP DAAC team members (Carolyn Gacke, Lind-

sey Harriman, Sydney Neeley), as well as Chris Doescher, LP DAAC project manager when 

releasing these data. We also like to thank Susan Benjamin, Director of USGS Western Geo-

graphic Science Center (WGSC) as well as WGSC administrative officer Larry Gaffney for their 

cheerful support and encouragement throughout the project. 

http://www.crcpress.com/product/isbn/9781420090093


 - 24 - DCN 
Version 1.0 

 

IX. Contact Information 
LP DAAC User Services 

U.S. Geological Survey (USGS) 

Center for Earth Resources Observation and Science (EROS) 

47914 252nd Street 

Sioux Falls, SD 57198-0001 

 

Phone Number: 605-594-6116 

Toll Free: 866-573-3222 (866-LPE-DAAC) 

Fax: 605-594-6963 

Email: lpdaac@usgs.gov 

Web: https://lpdaac.usgs.gov 

 

For the Principal Investigators, feel free to write to: 

Prasad S. Thenkabail at pthenkabail@usgs.gov  or 

 

For specific to 30-m cropland extent product of South Asia, Afghanistan and Iran, contact: 
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